PRM-151 IN
IDIOPATHIC PULMONARY FIBROSIS
AND
MYELOFIBROSIS

Beth Trehu, MD, FACP; Promedior
Bernt van den Blink, MD, PhD; Erasmus Medical Center
ACKNOWLEDGEMENTS

Preclinical Collaborators
Jeremy Duffield, U Washington
David Brenner, UCSD
Tatiana Kisseleva, UCSD
Cory Hogoaboam, Cedars-Sinai
Erica Herzog, Yale U.
Darrell Pilling, Rice U.
Richard Gomer, Texas A&M
Mark Lupher

Quantitative Imaging Consultants
Brian Bartholmai, MD, Mayo Rochester
Ryan Chamberlain, PhD, Imbio

MF Investigators and Staff
Srdan Verstovsek, MD Anderson
Jason Gotlib, Stanford
Ruben Mesa, Mayo Scottsdale
Lynda Foltz, St. Paul’s Hospital, University of British Columbia
Vikas Gupta, Princess Margaret
John Mascarenhas, Mt Sinai
Ron Hoffman, Mt Sinai
Ellen Ritchie, Cornell
Richard Silver, Cornell

Most importantly, THANK YOU, to all the patients with IPF and MF who made these clinical trials possible.
PRM-151 IS RECOMBINANT HUMAN PENTRAXIN-2

Pentraxin-2 (PTX-2)
- 125 kD homopentameric plasma protein
- Regulator of innate immunity and fibrosis
- Produced and cleared by the liver
- Plasma levels 30-50 µg/mL
- Plasma levels lower in fibrotic diseases

PRM-151
- Recombinant human PTX-2
- Manufactured in CHO cells
- In clinical development for fibrotic diseases
PTX-2 binds to damaged tissue and regulates macrophages to drive resolution of fibrosis.

Proinflammatory macrophages
- MIP1α, IL-1β
- IP10, NOS2

Profibrotic macrophages
- M2 Mφ, CCL17, IL-13Rα2, MARCO, FIZZ1, CCL2, OSM, ST2

Restorative macrophages
- IL-10, MMPs
- TIMPs

Fibrocyte
- Collagen

Ca²⁺-dependent DAMP binding sites
Mono/Mφ FcγR binding sites

PTX-2/PRM-151 PREVENTS FIBROSIS IN 20 PRECLINICAL MODELS

- Ocular Fibrotic Disease Models; Rabbit, Mouse
 - Bleomycin; Rat, Mouse
 - TGF-β; Mouse
- Chronic Asthma; Mouse
- Acute Asthma; Mouse
- Ischemia/Reperfusion; Mouse
- Alport’s; Mouse
- Hypertrophic Scar; Pig, Mouse, Rat
- Carbon Tetrachloride; Mouse
- Bile duct ligation; Mouse
- Lung
- Liver
- Kidney
- Sk
- Bone marrow
- In injury-associated system
PTX-2 PREVENTS FIBROSIS IN LUNG, KIDNEY & LIVER

• Lung Fibrosis (TGFβ model)
 • Human PTX-2 20mg/kg IP q2d, d0-28

• Kidney Fibrosis (UUO model)
 • Human PTX-2, 20mg/kg IP q2d, d0-14

• Liver Fibrosis (Bile Duct Ligation)
 • Human PTX-2 10mg/kg IP q2d, d1-13
 • Courtesy of D. Brenner and T. Kisseleva, UCSD
PTX-2/PRM-151 REVERSES EXISTING FIBROSIS AND IMPROVES ORGAN FUNCTION IN LUNG AND KIDNEY

Bleomycin-induced lung fibrosis in mice and rats

Human PTX-2: 5mg/kg IP q2d, d11-19
Murray et al. 2010 PLoS One. 5:e9683

Rat PTX-2 1.6mg/kg IP q2d, d7-21

Kidney Fibrosis in Alport Syndrome (coll4a3/-) Mice

PRM-151 10 mg/kg IP, d29-31 then q 2 weeks | Nakagawa et al. American Soc Nephrology Annual Meeting 2013
CLINICAL DEVELOPMENT OF PRM-151 FOCUSED ON TWO ORPHAN INDICATIONS TO MEET OBJECTIVES

- Strong Preclinical and Phase 1 Foundation
 - Preclinical data: long-lasting effect after short term dosing
 - Phase 1a Healthy Volunteers: No dose limiting toxicity

- Indications: Myelofibrosis and Idiopathic Pulmonary Fibrosis

- Phase 2 Objectives
 - Demonstrate improvement in organ function
 - Objective, measurable endpoints
 - Correlation with survival
 - Demonstrate decrease in fibrosis
 - Tissue biopsies
 - New imaging techniques
 - Optimize Dose and Schedule
MYELOFIBROSIS (MF): MONOCYTIC BONE MARROW MALIGNANCY WITH ACCESSIBLE TISSUE AND OBJECTIVE OUTCOME MEASURES

- Bone marrow fibrosis
- Anemia, abnormal White Blood Cell and Platelet counts
- Splenomegaly, Hepatomegaly due to Extramedullary Hematopoiesis
- Symptoms Linked to Splenomegaly and Elevated Cytokines: IL-6, TNF-α, CRP
- 2-5 year median survival

Thiele Haematologica 2005; 90: 1128-1132
PRM-151 MAY ADDRESS MF UNMET NEED FOR THERAPY THAT IMPROVES ENDPOINTS CORRELATED WITH SURVIVAL

- MF Efficacy assessed by IWG-MRT Response Criteria
- Response requires confirmation at 12 weeks
- PRM-151 has potential to
 - Reverse fibrosis
 - Restore normal hematopoiesis
 - Induce differentiation of malignant monocytic clone

<table>
<thead>
<tr>
<th>Elements of IWG-MRT Response Criteria</th>
<th>Correlates with Survival</th>
<th>Improved by ruxolitinib (approved)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>✓</td>
<td>□</td>
</tr>
<tr>
<td>Platelets</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>White Blood Cells</td>
<td>✓</td>
<td>□</td>
</tr>
<tr>
<td>Blasts</td>
<td>✓</td>
<td>□</td>
</tr>
<tr>
<td>BM Fibrosis</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Symptoms</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>□</td>
<td>✓</td>
</tr>
</tbody>
</table>
ADAPTIVE STUDY DESIGN PERMITS RAPID PROOF OF CONCEPT AND OPTIMIZATION OF DOSE AND SCHEDULE

Stage 1: 24 Patients

- Weekly PRM-151 + ruxolitinib
- Monthly PRM-151 + ruxolitinib
- Weekly PRM-151
- Monthly PRM-151

Criteria for Moving to Stage 2

- ≥ 1 response

Stage 2: 80 Patients

- Expansion of Stage 1 OR Additional Dose/Regimens

- 20 Patients

- 20 Patients

- 20 Patients

• 24 week treatment period
• Clinical and Laboratory Response Assessments every 4 weeks
• Bone Marrow biopsy every 12 weeks
• Patients with clinical benefit can continue beyond 24 weeks
IDIOPATHIC PULMONARY FIBROSIS (IPF)

- Characterized by excessive fibroblast proliferation /differentiation and ECM deposition

- Leading to progressive lung dysfunction
 - Reduced lung volume (decline in FVC)
 - Impaired gas exchange (decline in O2% sat)
 - Increased stiffness of the lungs
 - Shortness of breath, cough, reduced exercise capacity and eventually death

- Survival worse than most cancers
RATIONALE FOR PRM-151 IN IDIOPATHIC PULMONARY FIBROSIS (IPF)

- Immense unmet medical need
- Therapeutically dosed PRM-151 attenuated fibrosis and improved oxygenation in animal model of pulmonary fibrosis
- PTX-2 levels are reduced in patients with IPF
 - Lower levels correlate with lower FVC % predicted
- PRM-151 was safe in Phase 1a Healthy Volunteers study
- Prevention and/or reversal of fibrosis by PRM-151 could halt progression and potentially improve lung function
PRM-151 IPF STUDY DESIGN

<table>
<thead>
<tr>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
<th>W6</th>
<th>W7</th>
<th>W8</th>
<th>W9</th>
</tr>
</thead>
</table>

PRM-151 @ 1 mg/kg, 5 mg/kg, or 10 mg/kg or Placebo

IV days 1, 3, 5, 8 and 15

Screening

-4 -3 -2 -1

Observation

W1 W2 W3 W4 W5 W6 W7 W8 W9

S S S S S S S S S S S

PFTs

6 min walk

SGRQ

CT

Clinicaltrials.gov: Identifier NCT01254409

S = Safety
TREATMENT EMERGENT ADVERSE EVENTS:
NO SERIOUS ADVERSE EVENTS

<table>
<thead>
<tr>
<th>TEAE</th>
<th># Placebo (N=6)</th>
<th></th>
<th># PRM-151 (N=15)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mild</td>
<td>Moderate</td>
<td>Mild</td>
<td>Moderate</td>
</tr>
<tr>
<td>Cough</td>
<td>2</td>
<td></td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Productive Cough</td>
<td></td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Headache</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Dyspnea, Exertional</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Back Pain</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pruritus</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hematoma</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Catheter site hematoma</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Non-cardiac chest pain</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Mean FVC % predicted *increased* by 2.4% in all PRM-151 treated subjects
Mean FVC % predicted *decreased* by 1.5% in placebo subjects

6/14 PRM-151 treated patients show 5-10% relative Change from Baseline at 8 weeks
EXPLORATORY ANALYSIS OF IMAGING BIOMarkers

- HRCT is a prognostic biomarker in IPF
 - Findings correlate with disease severity:
 - PFT/survival
- HRCT may identify subtle changes not reflected in FVC, yielding valuable additional data
- Great tool for assessing response?

- However: poor inter- and intra observer agreement
- Opportunity for automated quantitative imaging
AUTOMATED QUANTITATIVE IMAGING

- Analysis and quantification of parenchymal lung abnormalities

- Individual voxels are classified and colour-coded into classes of abnormalities (normal/ground glass/reticulation etc)

- Volume and percentage of Interstitial abnormalities predictive of survival *

- Explore (retrospective analysis) the use of imaging biomarkers as outcome measure

*F. Maldonado et al ERJ Express. Published on April 5, 2013
AUTOMATED QUANTITATIVE IMAGING: EXAMPLE OF WORSENING

Subject Treatment Change from Screening to Day 57

<table>
<thead>
<tr>
<th>Subject</th>
<th>Treatment</th>
<th>Change from Screening to Day 57</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FVC%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Placebo</td>
<td>-4</td>
</tr>
</tbody>
</table>

Legend:
- Normal
- Ground Glass
- Reticular
- Honeycomb
- Normal /LAA
AUTOMATED QUANTITATIVE IMAGING: EXAMPLE OF STABLE DISEASE

<table>
<thead>
<tr>
<th>Subject</th>
<th>Treatment</th>
<th>Change from Screening to Day 57</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FVC%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>1 mg/kg</td>
<td>-3</td>
</tr>
</tbody>
</table>
AUTOMATED QUANTITATIVE IMAGING: EXAMPLE OF IMPROVEMENT

<table>
<thead>
<tr>
<th>Subject</th>
<th>Treatment</th>
<th>Change from Screening to Day 57</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FVC%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>5 mg/kg</td>
<td>8</td>
</tr>
</tbody>
</table>

Notes:
- **FVC%**: Forced Vital Capacity%
- **DLCO**: Diffusing Capacity of the Lung for Carbon Monoxide
- **6MWT**: 6-Minute Walk Test
- **SGRQ**: St. George’s Respiratory Questionnaire
- **IMBIO Quantitative Imaging**
 - **ILD**: Interstitial Lung Disease
 - **Non ILD**: Non-Interstitial Lung Disease
 - **Interpretation**: Improved

Diagram Notes:
- **Normal**
- **Ground Glass**
- **Reticular**
- **Honeycomb**
- **Normal /LAA**
CONCLUSIONS

- PTX-2/PRM-151 shows broad preclinical efficacy in numerous fibrotic disease models
- PRM-151 Safety Profile in humans remains excellent
- Encouraging efficacy signals in IPF patients support Phase 2 planning
- First Stage of Phase 2 MF trial fully enrolled
 - Final data available later this year
 - Bone marrow biopsies provide opportunity for direct demonstration of anti-fibrotic activity
- Planning for Stage 2